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Abstract: Second-order necessary or sufficient optimality conditions for nonlinear programming are usually
defined by means of the positive (semi-)definiteness of a quadratic form, or a maximum of quadratic forms,
over the critical cone. However, algorithms for finding such second-order stationary points are currently
unknown. Typically, an algorithm with a second-order property approximates a primal-dual point such
that the Hessian of the Lagrangian evaluated at the limit point is, under a constraint qualification, positive
semidefinite over the lineality space of the critical cone. This is in general a proper subset of the critical
cone, unless one assumes strict complementarity, which gives a weaker necessary optimality condition. In this
paper, a new strong sequential optimality condition is suggested and analyzed. Based on this, we propose a
penalty algorithm which, under certain conditions, is able to achieve second-order stationarity with positive
semidefiniteness over the whole critical cone, which corresponds to a strong necessary optimality condition.
Although the algorithm we propose is somewhat of a theoretical nature, our analysis provides a general
framework for obtaining strong second-order stationarity.
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1 Introduction
When proposing a derivative-based algorithm for smooth constrained optimization problems, one must have
in mind efficiency and robustness. In terms of robustness, it is clear that one does not expect that a local
minimizer will always be found. Thus, algorithms typically aim at finding points satisfying some first- or
second-order necessary optimality condition. The Karush-Kuhn-Tucker conditions are usually the standard
first-order stationarity notion employed. However, there are different notions of second-order stationarity.

Most notions of second-order stationarity are somewhat of a theoretical nature, since it is very difficult to
incorporate them in a practical algorithm, at least not without impairing efficiency. Thus, most algorithms
possessing a second-order global convergence theory only consider the simplest of these conditions, namely,
one that does not make use of the full second-order information. More specifically, instead of ensuring
positive semidefiniteness of the Hessian of the Lagrangian over the whole critical cone, this property is
assured only in a subspace contained in the critical cone. This is done essentially because dealing with the
whole critical cone is a computationally challenging task, see [17].

In this paper we consider nonlinear optimization problems in finite dimensions with equality and inequal-
ity constraints, where the problem functions are twice continuously differentiable and we aim at designing
a general framework that is able to find a point satisfying a strong second-order necessary optimality con-
dition, that is, considering the whole critical cone, under reasonable assumptions. This is done by means of
a penalty algorithm that keeps the inequality constraints within the subproblems. However, our approach
is somewhat theoretical as we do not propose an algorithm for solving the subproblems. This task remains
a challenging open problem. Nevertheless, the analysis we conduct is non-standard and it consists of a first
step towards the more general goal.

The paper starts in Section 2 with a review of different second-order necessary optimality conditions; we
focus in particular on the results relying on assumptions on the rank of the gradients of constraints nearby
the local minimizer, in particular, we consider the well known constant rank constraint qualification (CRCQ
[15]).
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the third author is funded by the São Paulo Research Foundation grants 2017/12187-9 and 2020/00130-5.
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In Section 3 we present a gentle introduction to the topic of sequential optimality conditions [3], which
is the main tool we employ to achieve our results. Based on this discussion, we introduce new strong second-
order necessary approximate KKT conditions that consider the whole critical cone. Under a constant rank
condition, we prove that all local minimizers of the optimization problem satisfy one of these approximate
KKT conditions while the other condition is satisfied by all strict local minimizers.

In Section 4, we recall from [7, 12] that a standard barrier method and a second-order augmented La-
grangian method are not able to guarantee the strong second-order condition, even if a strict local minimizer
of the subproblems is found at each iteration. Then, we show that this phenomenon will not occur (under a
constant rank condition) if only equality constraints are penalized. That is, we propose our framework for
designing an algorithm that will achieve the strong second-order condition under reasonable assumptions.
The assumptions we employ rely on the constant rank of sets of gradients of constraints and the objective
function, together with the extended Mangasarian-Fromovitz constraint qualification (MFCQ).

Our notation is rather standard. We just mention that ‖ · ‖ always denotes the Euclidean norm.

2 On Second-Order Conditions
Let us consider the nonlinear programming problem

Minimize f(x),
subject to hi(x) = 0, i = 1, . . . ,m,

gj(x) ≤ 0, j = 1, . . . , p,
(NLP)

where the functions f, hi, gj : Rn → R are twice continuously differentiable. By Ω, we denote the feasible
set of (NLP). Moreover, for any x ∈ Rn, the set

A(x) := {j ∈ {1, . . . , p} | gj(x) = 0}
contains the indices of inequality constraints that are active at x.

To formulate second-order conditions, let us first introduce the generalized Lagrangian L0 : Rn × R+ ×
Rm × Rp+ → R by

L0(x, r, λ, µ) := rf(x) + h(x)>λ+ g(x)>µ,

whereas the Lagrangian L : Rn × Rm × Rp+ → R is given by

L(x, λ, µ) := f(x) + h(x)>λ+ g(x)>µ.

Now, for any x ∈ Ω, the set Λ0(x) of Fritz John multipliers and the set Λ(x) of Lagrange multipliers are
defined as

Λ0(x) :=
{

0 6= (r, λ, µ) ∈ R+ × Rm × Rp+ | ∇xL0(x, r, λ, µ) = 0, g(x)>µ = 0
}

and
Λ(x) := {(λ, µ) ∈ Rm × Rp+ | ∇xL(x, λ, µ) = 0, g(x)>µ = 0},

respectively. For any x ∈ Ω, we further need the critical cone

C(x) := {d ∈ Rn | ∇f(x)>d ≤ 0, ∇h(x)>d = 0,∇gj(x)>d ≤ 0 for all j ∈ A(x)}. (2.1)

The next theorem provides a pair of no-gap second-order optimality conditions. It can be derived from [10].

Theorem 2.1. Let x̄ ∈ Ω be given. Then the following assertions are valid:

a) If Λ0(x̄) 6= ∅ and

sup
(r,λ,µ)∈Λ0(x̄)

d>∇2
xxL0(x̄, r, λ, µ)d > 0 for all d ∈ C(x̄) \ {0},

then x̄ is a strict local minimizer of (NLP).

b) If x̄ is a local minimizer of (NLP), then Λ0(x̄) 6= ∅ and

sup
(r,λ,µ)∈Λ0(x̄)

d>∇2
xxL(x̄, r, λ, µ)d ≥ 0 for all d ∈ C(x̄).

Although several research is based on Fritz John multipliers, in this paper we are interested in Lagrange
multipliers. As usual, any (x, λ, µ) is called a Karush-Kuhn-Tucker (KKT) point of (NLP) if x ∈ Ω and
(λ, µ) ∈ Λ(x).

To avoid the distinction between Fritz John and Lagrange multipliers, one may assume the well-known
Mangasarian-Fromovitz constraint qualification (MFCQ), which can be stated at x̄ ∈ Ω as saying that there
is no Fritz John multiplier (r, λ, µ) ∈ Λ0(x̄) with r = 0. Notice also that a Fritz John multiplier (r, λ, µ) with
r 6= 0 provides a Lagrange multiplier (λ/r, µ/r). That is, when r 6= 0, one may without loss of generality
consider r = 1. In this sense, under MFCQ, the notions of Fritz John and Lagrange multipliers coincide and
Theorem 2.1 gives rise to the following standard second-order necessary optimality condition:
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Proposition 2.2. Let x̄ be a local minimizer of (NLP) that satisfies MFCQ. Then Λ(x̄) 6= ∅ and

sup
(λ,µ)∈Λ(x̄)

d>∇2
xxL(x̄, λ, µ)d ≥ 0 for all d ∈ C(x̄). (2.2)

Instead of MFCQ, we may use the constant rank constraint qualification (CRCQ) from [15]. This leads
to the following second-order necessary optimality condition, which is the basis for our main focus in this
paper.

Proposition 2.3 ([2]). Let x̄ be a local minimizer of (NLP) that satisfies CRCQ. Then Λ(x̄) 6= ∅ and, for
any (λ, µ) ∈ Λ(x̄), it holds that

d>∇2
xxL(x̄, λ, µ)d ≥ 0 for all d ∈ C(x̄). (2.3)

Notice that under the stronger assumption that the linear independence constraint qualification (LICQ)
holds at x̄, Proposition 2.3 follows trivially from Proposition 2.2 since LICQ implies MFCQ and that Λ(x̄) is
a singleton. Obviously, condition (2.3) is a stronger necessary optimality condition than (2.2). Under CRCQ,
this stronger condition (2.3) holds basically because CRCQ implies that the value of the second-order form
〈d,∇2

xxL(x̄, λ, µ)d〉 in (2.2) is, for any d ∈ C(x̄), invariant to the choice of (λ, µ) ∈ Λ(x̄), see [11] and the
extended version of [9].

Under CRCQ the necessary optimality condition (2.3) would be rather suitable for the algorithmic
practice than condition (2.2). This means, given an algorithm that generates a primal-dual sequence
{(xk, λk, µk)} ⊂ Rn × Rm × Rp+, one is interested in proving that a limit point (x̄, λ, µ) ∈ Ω× Rm × Rp+ of
this sequence is such that (λ, µ) ∈ Λ(x̄) and the second-order condition (2.3) is satisfied. However, no such
algorithm has yet been presented. Algorithms with convergence to some kind of second-order point usually
find limit points that satisfy a weaker version of (2.3) (see [12] and the references therein), where the critical
cone C(x̄) is replaced by its lineality space

S(x̄) := {d ∈ Rn | ∇f(x̄)>d = 0,∇h(x̄)>d = 0,∇gj(x̄)>d = 0 for all j ∈ A(x̄)}. (2.4)

Clearly, this necessary optimality condition is less interesting than the one presented in Proposition 2.3,
since no associated sufficient optimality condition is known and S(x̄) ⊆ C(x̄). Also, one is essentially not
able to exploit the structure of S(x̄) in order to prove the result of Proposition 2.3 with C(x̄) replaced by
S(x̄) under a condition weaker than CRCQ. An exception (but assuming MFCQ) is the following result. Its
formulation makes use of the matrix M(x) ∈ Rn×(m+|A(x̄)|) with M(x) :=

(
∇h(x),∇gA(x̄)(x)

)
.

Proposition 2.4 ([9, 13, 16]). Let x̄ be a local minimizer of (NLP) which satisfies MFCQ. If

rank(M(x)) ≤ rank(M(x̄)) + 1

for all x sufficiently close to x̄, then there exists (λ, µ) ∈ Λ(x̄) with

d>∇2
xxL(x̄, λ, µ)d ≥ 0 for all d ∈ S(x̄). (2.5)

Of course, the less theoretical value of the second-order condition given by (2.5) is somehow compensated
by its numerical tractability, see the discussion in the extended version of [9]. That is, many practical
algorithms are able to exploit the linear space structure of S(x̄) in order to achieve (2.5) in a reasonable
manner. Our goal in this paper is to develop an algorithm whose limit points guarantee the stronger
second-order necessary optimality condition (2.3).

3 A Strong Sequential Optimality Condition
The study of global convergence of algorithms under weak assumptions can be done with the aid of sequential
optimality conditions [3]. Let us say that one is first able to show that an algorithm generates a sequence
{xk} satisfying some mathematical proposition P({xk}). Typically, this proposition is associated with a
perturbation of a necessary optimality condition. The second step would be to prove that whenever x̄ is a
local minimizer, there exists a sequence {zk} with zk → x̄ so that the proposition P({zk}) is valid. When
defining P(·), of course, one is interested in as strong as possible necessary optimality conditions, however,
one must consider the additional requirement that the mathematical proposition must also be satisfied by the
sequence generated by the algorithm of interest. Both of these steps can usually be done without assuming
that the problem satisfies a constraint qualification and may serve as an adequate enough global convergence
theory. This strategy has been applied in several contexts, in particular when the problem has no clear
standard optimality condition, or when one needs a consistent way of perturbing the standard optimality
conditions, say, in order to conduct a complexity analysis [14, 18]. This avoids constraint qualifications at
all; however, a final step of the analysis may be done using a constraint qualification for measuring the
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strength of the optimality condition: one should prove that when a feasible point x̄ satisfies a constraint
qualification and it can be approximated by some sequence zk → x̄ so that the mathematical proposition
P({zk}) holds, then x̄ satisfies a standard first- or second-order stationarity condition (say, that there exists
some (λ, µ) ∈ Λ(x̄) that satisfies (2.5)).

For instance, when the problem has only equality constraints, an algorithm may generate a sequence
{xk} that satisfies the mathematical proposition

P({xk}) :=

[
h(xk)→ 0 and ∇f(xk) +

m∑
i=1

∇hi(xk)λki → 0 for some sequence {λk} ⊂ Rm
]

and one can prove that a local minimizer x̄ may be approximated by a sequence zk → x̄ of this type, that is,
such that P({zk}) is satisfied. Notice that this necessary optimality condition is strictly stronger than the
usual Fritz John condition, which opens the path to considering constraint qualifications strictly weaker than
LICQ (more generally, without assuming MFCQ, if inequality constraints are considered in this example).

The final step measuring the strength of the sequential optimality condition may consist of proving
that when x̄ satisfies some constraint qualification and there exists at least one sequence zk → x̄ such that
P({zk}) holds, then Λ(x̄) 6= ∅. This shows that any limit point x̄ of the sequence generated by the algorithm,
that satisfies the constraint qualification, is a KKT point. Not all constraint qualifications may be used for
this purpose, but this separated analysis has helped in identifying new weak constraint qualifications suitable
for global convergence analysis. See, for instance, [4, 5, 6]. Also, this greatly simplifies the analysis of an
algorithm, which resorts to proving some property of the sequence it generates, instead of its limit.

In summary the global convergence of an algorithm using a sequential optimality condition may be done
as follows:

a) Characterize the type of sequences {xk} that the algorithm generates with a mathematical proposition
P({xk}).

b) Prove that at a local minimizer x̄ of the problem, there exists a sequence zk → x̄ such that P({zk})
holds.

c) Measure the strength of P(·) by showing that a point x̄, that can be approximated by zk → x̄ such
that P({zk}) holds, has the property that whenever x̄ satisfies some constraint qualification, then a
standard first- or second-order necessary optimality condition is satisfied at x̄.

In the remainder of this section we proceed with item b), while in the next section we continue with
the analysis of items a) and c). This means, we first develop a strong sequential optimality condition and
secondly prove that for a local minimizer x̄ of (NLP) there exists a sequence {zk} converging to x̄ so that
{zk} satisfies this optimality condition. Items a) and c) will be dealt with in Section 4 and are related to
our main goal of building an algorithm whose limit points satisfy a strong second-order necessary optimality
condition, based on the critical cone (2.1), as used in Proposition 2.3, instead of its lineality space (2.4) in
Proposition 2.4.

At this point, we do not assume a constraint qualification to hold with respect to the whole feasible set
Ω. However, the following constant rank condition with respect to the set of inequality constraints will be
used.

Assumption 3.1. It is said that a point x̄ ∈ Rn satisfies this assumption if there is a neighborhood of x̄ so
that, for any subset J ⊆ A(x̄), the rank of the family {∇gj(y)}j∈J is constant for all y in this neighborhood.

Assumption 3.1 can be seen as CRCQ for a feasible point of a constraint set defined by the inequality
constraints of (NLP) only. This is clearly not a constraint qualification for (NLP). Notice that Assumption
3.1 holds trivially if the functions gj are affine. In order to present our definition of a strong second-order
sequential optimality condition for problems such that Assumption 3.1 holds, let us consider the perturbed
critical cones

C1(y, x, µ) :=


∇hi(y)>d = 0 for i = 1, . . . ,m,

d ∈ Rn ∇gj(y)>d ≤ 0 for j ∈ A(x) with µj = 0,
∇gj(y)>d = 0 for j ∈ A(x) with µj > 0.


and

C2(y, x) :=


∇f(y)>d = 0,

d ∈ Rn ∇hi(y)>d = 0 for i = 1, . . . ,m,
∇gj(y)>d ≤ 0 for j ∈ A(x).

 ,

for x, y ∈ Rn and µ ∈ Rp+. Notice that when (x̄, λ, µ) is a KKT point of (NLP), it holds that

C1(x̄, x̄, µ) = C(x̄) = C2(x̄, x̄)

with C(x) defined in (2.1).
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Definition 3.1. (Strong-AKKT2) A point x̄ satisfies the C1-Strong Approximate-KKT2 (C1-SAKKT2)
condition for (NLP) if there exists a sequence (xk, λk, µk, εk) ∈ Rn × Rm × Rp+ × (0,∞) with xk → x̄ and
εk ↘ 0 such that ∥∥∥∥∥∥∇f(xk) +

m∑
i=1

λki∇hi(xk) +

p∑
j=1

µkj∇gj(xk)

∥∥∥∥∥∥ ≤ εk (3.1)

‖h(xk)‖ ≤ εk, ‖max{0, g(xk)}‖ ≤ εk, ‖min{µk,−g(xk)}‖ ≤ εk, (3.2)

and

d>

∇2f(xk) +

m∑
i=1

λki∇2hi(x
k) +

p∑
j=1

µkj∇2gj(x
k)

 d ≥ −εk‖d‖2 for all d ∈ C1(xk, x̄, µk). (3.3)

If one replaces C1(xk, x̄, µk) by C2(xk, x̄) in the previous definition we say that x̄ satisfies the C2-SAKKT2
condition.

We now prove that C1-SAKKT2 is a necessary optimality condition for problems which fulfill Assump-
tion 3.1 while C2-SAKKT2 is a necessary condition for strict optimality under Assumption 3.1.

Theorem 3.2. Let x̄ be a local minimizer of (NLP) and suppose that Assumption 3.1 holds at x̄. Then x̄
satisfies the C1-SAKKT2 condition. If, in addition, x̄ is a strict local minimizer of (NLP), then x̄ satisfies
the C2-SAKKT2 condition.

Proof. Let δ > 0 be chosen such that f(x̄) ≤ f(x) holds for all x ∈ Ω with ‖x − x̄‖ ≤ δ. Given a sequence
{ρk} ⊂ R+ with ρk → +∞, we consider the regularized penalty subproblem, where only the equality
constraints are penalized, that is,

Minimize φk(x) := f(x) +
ρk

2

m∑
i=1

hi(x)2 +
1

4
‖x− x̄‖4,

subject to gj(x) ≤ 0, j = 1, . . . , p,

‖x− x̄‖ ≤ δ.

(3.4)

Let xk be a global solution of the optimization problem (3.4), which exists because its feasible set is non-
empty and compact and the objective function is continuous. Therefore, for any k ∈ N, we have

f(xk) +
1

4
‖xk − x̄‖4 ≤ φk(xk) ≤ φk(x̄) = f(x̄). (3.5)

Moreover, because ‖xk − x̄‖ ≤ δ is valid for all k ∈ N, there is x∗ and an infinite subset K ⊆ N so that
lim
k∈K

xk = x∗. Notice that g(x∗) ≤ 0 and ‖x∗ − x̄‖ ≤ δ. Further, since ρk → +∞ and {φk(xk)}k∈K is

bounded, we have
lim
k∈K

h(xk) = 0 (3.6)

so that h(x∗) = 0 follows. From (3.5) taken for k ∈ K, we also conclude that

f(x∗) +
1

4
‖x∗ − x̄‖4 ≤ f(x̄).

This, g(x∗) ≤ 0, h(x∗) = 0, ‖x∗− x̄‖ ≤ δ, and the definition of δ imply f(x̄) ≤ f(x∗) so that x∗ = x̄ follows.
Then, for k ∈ K large enough, we have that ‖xk − x̄‖ < δ, i.e., the constraint ‖x − x̄‖ ≤ δ in (3.4) is not
active at x = xk for these k ∈ K. Hence, applying Proposition 2.3 (with (NLP) replaced by problem (3.4))
for each of these large enough k ∈ K, it follows by Assumption 3.1 that there exists a Lagrange multiplier
µk ∈ Rp+ such that (xk, µk) is a KKT point of (3.4) that satisfies a strong second-order necessary optimality
condition. More in detail, we have that

g(xk) ≤ 0, µk ≥ 0, g(xk)>µk = 0, (3.7)

∇xL(3.4)(x
k, µk) := ∇φk(xk) +

p∑
j=1

µkj∇gj(xk)

= ∇f(xk) +
m∑
i=1

ρkhi(x
k)∇hi(xk) + ‖xk − x̄‖2(xk − x̄)

+
p∑
j=1

µkj∇gj(xk)

= 0,

(3.8)
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and, because of

∇2
xxL(3.4)(x

k, µk) = ∇2f(xk) + ρk
m∑
i=1

hi(x
k)∇2hi(x

k) +∇hi(xk)∇hi(xk)>

+
p∑
j=1

µkj∇2gj(x
k) + 2(xk − x̄)(xk − x̄)> + ‖xk − x̄‖2I,

we further have that
d>∇2

xxL(3.4)(x
k, µk)d ≥ 0 for all d ∈ C(3.4)(x

k) (3.9)

with
C(3.4)(x

k) :=
{
d ∈ Rn | ∇φk(xk)>d ≤ 0,∇gj(xk)>d ≤ 0 for all j ∈ A(xk)

}
.

Since (xk, µk) satisfies (3.7) and (3.8), this yields

C(3.4)(x
k) =

d ∈ Rn
∣∣∣∣∣∣
p∑
j=1

µkj∇gj(xk)>d = 0,∇gj(xk)>d ≤ 0 for j ∈ A(xk)


=

{
d ∈ Rn

∣∣∣∣∣ ∇gj(xk)>d ≤ 0 for j ∈ A(xk) with µkj = 0,

∇gj(xk)>d = 0 for j ∈ A(xk) with µkj > 0

}
.

Defining
λk := ρkh(xk), εk := max{‖xk − x̄‖, ‖h(xk)‖} for k ∈ K,

we first obtain that εk ↘ 0 for k ∈ K. Without loss of generality, we assume that k ∈ K is large enough
so that, due to (3.7), µkj = 0 for j /∈ A(x̄). Thus, it follows from (3.8) and (3.7) that, for k ∈ K sufficiently
large, ∥∥∥∥∥∥∇f(xk) +

m∑
i=1

λki∇hi(xk) +

p∑
j=1

µkj∇gj(xk)

∥∥∥∥∥∥ ≤ ‖xk − x̄‖3 ≤ εk,
‖h(xk)‖ ≤ εk, ‖max{0, g(xk)}‖ = 0

by gj(x
k) ≤ 0 according to (3.4), and

min{µk,−g(xk)} = 0.

Therefore, the requirements (3.1) and (3.2) in Definition 3.1 are satisfied. Furthermore, since A(xk) ⊆ A(x̄)
for k ∈ K sufficiently large, we have

C1(xk, x̄, µk) ⊆ C(3.4)(x
k) ∩ {d ∈ Rn | ∇h(xk)>d = 0}.

Taking any d ∈ C1(xk, x̄, µk), we further get from (3.9) with the definitions of λk and εk that, for k ∈ K
sufficiently large,

d>∇2
xxL(xk, λk, µk)d = d>

(
∇2f(xk) +

m∑
i=1

λki∇2hi(x
k) +

∑
i∈A(x̄)

µki∇2gi(x
k)

)
d

≥ −d>
(
2(xk − x̄)(xk − x̄)> − ‖xk − x̄‖2I

)
d

≥ −εk‖d‖2.

Hence, also (3.3) in Definition 3.1 holds and, altogether, x̄ satisfies the C1-SAKKT2 condition.
Assume now that x̄ is a strict local minimizer of (NLP). Thus, we can follow exactly the same proof

with φk(x) replaced by φ̃k(x) := f(x) +
ρk

2

m∑
i=1

hi(x)2. Note that the expression for C(3.4)(x
k) ∩ {d ∈ Rn |

∇h(xk)>d = 0}, again with φk replaced by φ̃k, contains C2(xk, x̄), which concludes the proof.

4 Generating KKT Points with Strong Second-Order
Conditions

Typically, second-order algorithms are only shown to generate a sequence that converges to a point that
satisfies the weak second-order necessary optimality condition from Proposition 2.4. In [12], it is shown that
limit points of a standard barrier method need not satisfy the stronger second-order necessary optimality
condition from Proposition 2.3, even if strict local minimizers for the subproblems are found at each iteration.
In detail, the authors from [12] considered the counterexample
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Minimize 1
2
x>Hx,

subject to x ≥ 0,

where x ∈ Rn with n ≥ 4 and H = I − 3
2n(n−1)

zz> with z = e− ne1, where e1 is the first canonical vector

and e is the vector with 1 in all entries. For any sequence rk ↘ 0, let xk =
√
rke→ x̄ = 0 be defined. Notice

that µ = 0 is the unique Lagrange multiplier associated with x̄, that is, ∇xL(x̄, µ) = 0. However, one has

e>1 ∇2
xxL(x̄, µ)e1 = e>1 He1 = 1−

3(n− 1)

2n
< 0 with e1 ∈ C(x̄) = Rn+.

Thus, the sequence {xk} converges to a point that fails to satisfy the strong second-order necessary optimality
condition. Note however that xk is a strict local minimizer of the barrier function subproblem

Minimize b(x, rk) := 1
2
x>Hx− rk

n∑
i=1

log(xi)

subject to x > 0.

Indeed, one has

∇xb(xk, rk) = Hxk − rk(xk)−1 = 0 and ∇2
xxb(x

k, rk) = H + rk(xk)−2 =
1

2
I +

3

2

(
I −

zz>

z>z

)
,

where the latter is clearly positive definite. Here, (xk)−1 and (xk)−2 were used to denote, respectively, the
componentwise inverse vector and the diagonal matrix with inverse-squared diagonal entries of xk as defined
above. The same example from [12] was analyzed in [7]. There, it was shown that a second-order augmented
Lagrangian method may also generate the same sequence xk as above in such a way that xk is a strict local
minimizer of the corresponding augmented Lagrangian subproblems

Minimize
1

2
x>Hx+ ρk

n∑
i=1

max

{
0,−xi +

µki
ρk

}2

for standard approximate Lagrange multipliers µk and penalty parameters ρk.
These results suggest that in order to generate points satisfying a stronger second-order necessary con-

dition for (NLP), one should not penalize inequality constraints. Therefore, we consider the simple penalty
algorithm below whose subproblems penalize only equality constraints, while the inequality constraints are
kept within the subproblems.

To define the subproblems later on, let ρ > 0 be given and consider the problem

Minimize Fρ(x) := f(x) + 1
2
ρ‖h(x)‖2,

subject to g(x) ≤ 0.
(4.1)

Proposition 4.1. Suppose that a local minimizer xρ of (4.1) is strict and satisfies Assumption 3.1. Then,
for any ε > 0, there exist x = x(ρ, ε) ∈ Rn and µ = µ(ρ, ε) ∈ Rp+ which solve the KKT (ρ, ε) system given
by ∥∥∥∥∥∥∇Fρ(x) +

p∑
j=1

µj∇gj(x)

∥∥∥∥∥∥ ≤ ε, (4.2)

‖max{0, g(x)}‖ ≤ ε, ‖min{µ,−g(x)}‖ ≤ ε,

d>

(
∇2Fρ(x) +

p∑
j=1

µj∇2gj(x)

)
d ≥ −ε‖d‖2 for all d ∈ Cρ(x),

where
Cρ(x) :=

{
d ∈ Rn | ∇Fρ(x)>d = 0, ∇gj(x)>d ≤ 0 for all j ∈ A(x)

}
.

Proof. The proposition follows immediately by applying Theorem 3.2 to problem (4.1) because Assumption
3.1 is requested to hold at the strict local minimizer xρ of problem (4.1).

Based on the KKT(ρ, ε) system above, we consider the following simple algorithm.

Algorithm 1
Let sequences {εk}, {ρk} ⊂ (0,∞) with εk ↘ 0 and ρk →∞ be given. Set k := 0.

Step 1: Compute (xk, µk) ∈ Rn × Rp+ as a solution of KKT (ρk, εk).

Step 2: Set k := k + 1 and go back to Step 1.
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Our global convergence result will partly rely on the following assumption, which is related to Assumption 3.1.

Assumption 4.1. It is said that a point x̄ ∈ Rn satisfies this assumption if there is a neighborhood of x̄
so that, for any subset J ⊆ A(x̄), the rank of the family {∇f(y)} ∪ {∇hi(y)}mi=1 ∪ {∇gj(y)}j∈J is constant
for all y in this neighborhood.

Moreover, in part b) of Theorem (4.2), we will employ the extended MFCQ, which is satisfied at a point
x̄ ∈ Rn, if

– the column rank of ∇h(x̄) ∈ Rn×m is equal to m and

– there is d ∈ Rn such that ∇h(x̄)>d = 0 and ∇gj(x̄)>d < 0 for all j ∈ A(x̄).

Note that the extended MFCQ does not require that x̄ belongs to the feasible set Ω. However, in the theorem
below, g(x̄) ≤ 0 holds by construction.

Theorem 4.2. Let {(xk, µk)} be an infinite sequence generated by Algorithm 1. Further assume that the
sequence {xk} has an accumulation point x̄. Then, the following assertions hold:

a) If h(x̄) = 0, then x̄ satisfies the C2-SAKKT2 condition.

b) If the extended MFCQ and Assumption 4.1 are satisfied at x̄, then there are λ ∈ Rm and µ ∈ Rp+ so

that (x̄, λ, µ) fulfills the KKT conditions of (NLP) and the second-order condition 〈d,∇2
xxL(x̄, λ, µ)d〉 ≥

0 for all d ∈ C(x̄).

Proof. a) Let us assume without loss of generality that xk → x̄. Note that

∇Fρk (xk) = ∇f(xk) +
m∑
i=1

λki∇hi(xk),

∇2Fρk (xk) = ∇2f(xk) +
m∑
i=1

λki∇2hi(x
k) + ρk

m∑
i=1
∇hi(xk)∇hi(xk)>

(4.3)

with λki := ρkhi(x
k) for i = 1, . . . ,m. Thus, by Step 1 in Algorithm 1, it follows that∥∥∥∥∥∇Fρk (xk) +

p∑
i=1

µkj∇gj(xk)

∥∥∥∥∥ =

∥∥∥∥∥∇f(xk) +

m∑
i=1

λki∇hi(xk) +

p∑
i=1

µkj∇gj(xk)

∥∥∥∥∥ ≤ εk, (4.4)

‖max{0, g(xk)}‖ ≤ εk, ‖min{µk,−g(xk)}‖ ≤ εk, (4.5)

and, having (4.3) in mind,

d>

∇2f(xk) +

m∑
i=1

λki∇2hi(x
k) +

p∑
j=1

µkj∇2gj(x
k)

 d ≥ −εk‖d‖2 − ρkd>
m∑
i=1

∇hi(xk)∇hi(xk)>d, (4.6)

for all d ∈ Cρk (xk). Since h(x̄) = 0 is assumed in assertion a), we have

lim
k→∞

‖h(xk)‖ = 0. (4.7)

To complete the proof that x̄ satisfies the C2-SAKKT2 condition, we observe that A(xk) ⊆ A(x̄) for k
sufficiently large and, as a consequence,

C2(xk, x̄) =
{
d ∈ Rn | ∇f(xk)>d = 0,∇hi(xk)>d = 0 for i = 1, . . . ,m,∇gj(xk)>d ≤ 0 for j ∈ A(x̄)

}
⊆

{
d ∈ Rn | ∇f(xk)>d+

m∑
i=1

λki∇hi(xk)>d = 0,∇gj(xk)>d ≤ 0 for j ∈ A(xk)

}
= Cρk (xk)

is valid for k sufficiently large. According to this and (4.3), (4.6) yields

d>

∇2f(xk) +

m∑
i=1

λkj∇2hi(x
k) +

p∑
j=1

µkj∇2gj(x
k)

 d ≥ −εk‖d‖2 for all d ∈ C2(xk, x̄)

for all sufficiently large k. This, (4.4), (4.5), and (4.7) show that x̄ satisfies the C2-SAKKT2 condition.
b) Since the extended MFCQ is assumed to hold at x̄, it is well known that {(λk, µk)} is bounded.

Indeed, if this would be not the case, we can divide formula (4.4) by ‖(λk, µk)‖. Then an infinite index set
K ⊆ N exists with

lim
k∈K

(λk, µk)

‖(λk, µk)‖
= (α, β) 6= 0 and β ≥ 0.
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Taking the limit in (4.4) and (4.5), we obtain

m∑
i=1

αi∇hi(x̄) +

p∑
j=1

βj∇gj(x̄) = 0, g(x̄) ≤ 0, and min{β,−g(x̄)} = 0, (4.8)

which leads to (α, β) = 0 due to the extended MFCQ. This contradicts ‖(α, β)‖ = 1. Hence, for an infinite
index set K1 ⊆ K, we have that

lim
k∈K1

(λk, µk) = (λ, µ) ∈ Λ(x̄).

Therefore, λki = ρkhi(x
k) for i = 1, . . . ,m and ρk →∞ imply

lim
k∈K1

‖h(xk)‖ = 0,

i.e., by the continuity of h, it follows that h(x̄) = 0. Moreover, according to (4.8), we also have g(x̄) ≤ 0.
Thus, x̄ ∈ Ω so that (x̄, λ, µ) is a KKT point of (NLP).

To complete the proof of part b), take any

d ∈ C(x̄) = {d ∈ Rn | ∇f(x̄)>d ≤ 0, ∇h(x̄)>d = 0,∇gj(x̄)>d ≤ 0 for all j ∈ A(x̄)}

with C(x) defined in (2.1). Since (x̄, λ, µ) is a KKT point, we easily see that ∇f(x̄)>d = 0. Now, let
J ⊆ A(x̄) denote the set of all indexes such that ∇gj(x̄)>d = 0. By Assumption 4.1 and using the proof
technique in [1, Lemma 3.1], we get that there exists a sequence dk → d such that

∇f(xk)>dk = 0, ∇hi(xk)>dk = 0 for i = 1, . . . ,m, and ∇gj(xk)>dk = 0 for j ∈ J.

Since ∇gj(x̄)>d < 0 for j 6∈ J , we have for k large enough that dk ∈ C2(xk, x̄). Using direction dk in (3.3)
with C1(xk, x̄, µk) replaced by C2(xk, x̄), we may take the limit for k →∞ and get 〈d,∇2

xxL(x̄, λ, µ)d〉 ≥ 0.
As this can be done for all d ∈ C(x̄), the proof is complete.

We end by noting that Assumption 4.1 cannot be removed in the previous result. Indeed, let us consider
a modification of the example given by Baccari in [8] and let us apply Algorithm 1.

Example 4.3. For the problem

Minimize x3,

subject to x3 ≥ 2
√

3x1x2,
x3 ≥ x2

2 − 3x2
1,

x3 ≥ −2
√

3x1x2 − 2x2
2,

x3 = 0,

the point x̄ = (0, 0, 0) is a global minimizer that satisfies MFCQ. Take a sequence ρk → ∞ and consider
the sequence of subproblems as associated to {ρk} by Algorithm 1, i.e., just the equality constraint x3 = 0
is penalized and the inequality constraints are kept within the subproblems.Thus, the subproblems read as
follows:

Minimize x3 + ρk
2
x2

3,

subject to x3 ≥ 2
√

3x1x2,
x3 ≥ x2

2 − 3x2
1,

x3 ≥ −2
√

3x1x2 − 2x2
2.

(4.9)

We take the constant sequence xk = x̄ for all k, since x̄ is the global solution for every k. However, it
can easily be calculated that the point x̄ does not satisfy the strong second-order necessary optimality
condition (2.3).
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